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MAINTAINING ORDERING VIA A
MULTI-LEVEL MAP OF A SOLID-STATE
MEDIA

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation-in-part, and claims the
benefit of the filing date, of International Patent Application
no. PCT/US2012/049905 filed Aug. 8, 2012, and U.S. patent
application Ser. No. 13/963,074 filed Aug. 9, 2013, the teach-
ings of which are incorporated herein in their entireties by
reference.

This application claims the benefit of the filing date of U.S.
provisional patent application No. 61/783,555 filed Mar. 14,
2013, the teachings of which are incorporated herein in their
entireties by reference.

The subject matter of this application is related to U.S.
patent application Ser. Nos. 13/464,433 filed May 4, 2012,
13/567,025 filed Aug. 4, 2012, 13/600,464 filed Aug. 31,
2012, 13/729,966 filed Dec. 28, 2012, and 13/748,260 filed
Jan. 23, 2013, the teachings of which are incorporated herein
in their entireties by reference.

BACKGROUND

Flash memory is a non-volatile memory (NVM) that is a
specific type of electrically erasable programmable read-only
memory (EEPROM). One commonly employed type of flash
memory technology is NAND flash memory. NAND flash
memory requires small chip area per cell and is typically
divided into one or more banks or planes. Each bank is
divided into blocks; each block is divided into pages. Each
page includes a number of bytes for storing user data, error
correction code (ECC) information, or both.

There are three basic operations for NAND devices: read,
write and erase. The read and write operations are performed
on a page-by-page basis. Page sizes are generally 2 bytes of
user data (plus additional bytes for ECC information), where
N is an integer, with typical user data page sizes of, for
example, 2,048 bytes (2 KB), 4,096 bytes (4 KB), 8,192 bytes
(8 KB) or more per page. A “read unit” is the smallest amount
of data and corresponding ECC information that can be read
from the NVM and corrected by the ECC, and might typically
be between 4K bits and 32K bits (e.g., there is generally an
integer number of read units per page). Pages are typically
arranged in blocks, and an erase operation is performed on a
block-by-block basis. Typical block sizes are, for example,
64, 128 or more pages per block. Pages must be written
sequentially, usually from a low address to a high address
within a block. Lower addresses cannot be rewritten until the
block is erased. Associated with each page is a spare area
(typically 100-640 bytes) generally used for storage of ECC
information and/or other metadata used for memory manage-
ment. The ECC information is generally employed to detect
and correct errors in the user data stored in the page, and the
metadata might be used for mapping logical addresses to and
from physical addresses. In NAND flash chips with multiple
banks, multi-bank operations might be supported that allow
pages from each bank to be accessed substantially in parallel.

NAND flash memory stores information in an array of
memory cells made from floating gate transistors. These tran-
sistors hold their voltage level, also referred to as charge, for
long periods of time, on the order of months or years, without
external power being supplied. In single-level cell (SLC)
flash memory, each cell stores one bit of information. In
multi-level cell (MLC) flash memory, each cell can store
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more than one bit per cell by choosing between multiple
levels of electrical charge to apply to the floating gates of its
cells. MLLC NAND flash memory employs multiple voltage
levels per cell with a serially linked transistor arrangement to
allow more bits to be stored using the same number of tran-
sistors. Thus, considered individually, each cell has a particu-
lar programmed charge corresponding to the logical bit
value(s) stored in the cell (e.g., 0 or 1 for SLC flash; 00,01, 10,
11 for MLC flash), and the cells are read based on one or more
threshold voltages for each cell. However, increasing the
number of bits per cell increases cell-to-cell interference and
retention noise, increasing the likelihood of read errors and,
thus, the bit error ratio (BER) of the system. Further, the read
threshold voltages of each cell change over operating time of
the NVM, for example due to read disturb, write disturb,
retention loss, cell aging and process, voltage and tempera-
ture (PVT) variations, also increasing BER.

As described, typical NVMs require that a block be erased
before new data can be written to the block. Thus, NVM
systems, such as solid-state disks (SSDs) employing one or
more NVM chips, typically periodically initiate a “garbage
collection” process to erase data that is “stale” or out-of-date
to prevent the flash memory from filling up with data that is
mostly out-of-date, which would reduce the realized flash
memory capacity. However, NVM blocks can be erased only
a limited number of times before device failure. For example,
a SL.C flash might only be able to be erased on the order of
100,000 times, and a ML.C flash might only be able to be
erased on the order of 10,000 times. Therefore, over the
operational life (e.g., over a rated number of program/erase
(P/E) cycles for NAND flash) of an NVM, the NVM wears
and blocks of flash memory will fail and become unusable.
Block failure in NVMs is analogous to sector failures in hard
disk drives (HDDs). Typical NVM systems might also per-
form wear-leveling to distribute, as evenly as possible, P/E
cycles over all blocks of the NVM. Thus, over the lifetime of
an NVM system, the overall storage capacity might be
reduced as the number of bad blocks increases and/or the
amount of storage used for system data requirements (e.g.,
logical-to-physical translation tables, logs, metadata, ECC,
etc.) increases. Thus, it can be important to reduce the amount
of data written to the NVM during the garbage collection
process.

During the garbage collection process, user data in a block
which is still valid is moved to new location on the storage
media in a background process. “Valid” user data might be
any address that has been written at least once, even if the host
device is no longer using this data. To reduce the amount of
“valid” but no longer needed data that is rewritten during
garbage collection, some storage protocols support com-
mands that enable an NVM to designate blocks of previously
saved data as unneeded or invalid such that the blocks are not
moved during garbage collection, and the blocks can be made
available to store new data. Examples of such commands are
the SATA TRIM (Data Set Management) command, the SCSI
UNMAP command, the MultiMediaCard (MMC) ERASE
command, and the Secure Digital (SD) card ERASE com-
mand. Generally, such commands improve NVM perfor-
mance such that a fully trimmed NVM has performance
approaching that of a newly manufactured (i.e., empty) NVM
of the same type. However, performing these commands for
large numbers of blocks at once can be time consuming and
reduce operating efficiency of the NVM.

SUMMARY

This Summary is provided to introduce a selection of con-
cepts in a simplified form that are further described below in



US 9,218,281 B2

3

the Detailed Description. This Summary is not intended to
identify key features or essential features of the claimed sub-
ject matter, nor is it intended to be used to limit the scope of
the claimed subject matter.

Described embodiments provide a media controller that
processes requests from a host device that include a logical
address and address range. A map of the media controller
determines physical addresses of a solid-state media associ-
ated with the logical address and address range of the request.
The map is a multi-level map having a plurality of leaf-level
map pages that are stored in the solid-state media, with a
subset of the leaf-level map pages stored in a map cache. Each
leaf-level map page includes map entries that are each asso-
ciated with physical addresses of the solid-state media. Based
on the logical address and address range, it is determined
whether a corresponding leaf-level map page is stored in the
map cache. If the leaf-level map page is stored in the map
cache, a cache index and control indicators of the map cache
entry are returned in order to enforce ordering rules that
selectively enable access to a corresponding leaf-level map
page based on the control indicators and a determined request

type.

BRIEF DESCRIPTION OF THE DRAWING
FIGURES

Other aspects, features, and advantages of described
embodiments will become more fully apparent from the fol-
lowing detailed description, the appended claims, and the
accompanying drawings in which like reference numerals
identify similar or identical elements.

FIG. 1 shows a block diagram of a flash memory storage
system in accordance with exemplary embodiments;

FIG. 2 shows an exemplary functional block diagram of a
single standard flash memory cell;

FIG. 3 shows an exemplary NAND MLC flash memory
cell in accordance with exemplary embodiments;

FIG. 4 shows a block diagram of an exemplary arrange-
ment of the solid state media of the flash memory storage
system of FIG. 1;

FIG. 5 shows a block diagram of an exemplary mapping of
a logical page number (LPN) portion of a logical block num-
ber (LBA) of the flash memory storage system of FIG. 1;
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FIG. 6 shows a block diagram of an exemplary two-level
mapping structure of the flash memory storage system of F1G.

FIG. 7 shows a block diagram of exemplary map page
headers employed by the flash memory storage system of
FIG. 1;

FIG. 8 shows an exemplary flow diagram of a Mega-TRIM
operation employed by the flash memory storage system of
FIG.1

FIG. 9 shows an exemplary block diagram of a lower-level
map page cache data structure employed by the flash memory
storage system of FIG. 1;

FIG. 10 shows an exemplary flow diagram of a host request
processing operation employed by the flash memory storage
system of FIG. 1; and

FIG. 11 shows an exemplary flow diagram of a host request
processing operation employed by the flash memory storage
system of FIG. 1.

DETAILED DESCRIPTION

Described embodiments provide a media controller that
processes requests from a host device that include a logical
address and address range. A map of the media controller
determines physical addresses of a solid-state media associ-
ated with the logical address and address range of the request.
The map is a multi-level map having a plurality of leaf-level
map pages that are stored in the solid-state media, with a
subset of the leaf-level map pages stored in a map cache. Each
leaf-level map page includes map entries that are each asso-
ciated with physical addresses of the solid-state media. Based
on the logical address and address range, it is determined
whether a corresponding leaf-level map page is stored in the
map cache. If the leaf-level map page is stored in the map
cache, a cache index and control indicators of the map cache
entry are returned in order to enforce ordering rules that
selectively enable access to a corresponding leaf-level map
page based on the control indicators and a determined request
type.

Table 1 defines a list of acronyms employed throughout
this specification as an aid to understanding the described
embodiments:

TABLE 1

BER Bit Error Rate BUS Block Used Space
CAM Content Addressable Memory ECC Error Correction Code
eDRAM  Embedded Dynamic Random EEPROM Electrically Erasable Programmable

Access Memory Read-Only Memory
FLM First Level Map HDD Hard Disk Drive
IC Integrated Circuit /O Input/Output
LBA Logical Block Address LDPC Low-Density Parity-Check
LLR Log-Likelihood Ratio LPN Logical Page Number
LSB Least Significant Bit LRU Least Recently Used
MLC Multi-Level Cell MLM Multi-Level Map
MMC MultiMediaCard MSB Most Significant Bit
NVM Non-Volatile Memory 00S Out-Of-Space
op Over Provisioning PCI-E Peripheral Component Interconnect

Express
P/E Program/Erase PVT Process, Voltage, Temperature
SAS Serial Attached SCSI SATA Serial Advanced Technology
Attachment

SCSI Small Computer System SD Secure Digital

Interface
SLC Single Level Cell SLM Second Level Map
SoC System on Chip SRAM Static Random Access Memory
SRIO Serial Rapid Input/Output SSD Solid-State Disk
TBP To-Be-Processed USB Universal Serial Bus
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FIG. 1 shows a block diagram of non-volatile memory
(NVM) storage system 100. NVM storage system 100
includes media 110, which is coupled to media controller
120. Media 110 might be implemented as a NAND flash
solid-state disk (SSD), a magnetic storage media such as a
hard disk drive (HDD), or as a hybrid solid-state and magnetic
system. Although not shown in FIG. 1, media 110 might
typically include one or more physical memories (e.g., non-
volatile memories, NVMs), such as multiple flash chips. As
shown in FIG. 1, media 110 and media controller 120 are
collectively SSD 101. Media controller 120 includes solid-
state controller 130, control processor 140, buffer 150 and 1/O
interface 160. Media controller 120 controls transfer of data
between media 110 and host device 180 that is coupled to
communication link 170. Media controller 120 might be
implemented as a system-on-chip (SoC) or other integrated
circuit (IC). Solid-state controller 130 might be used to access
memory locations in media 110, and might typically imple-
ment low-level, device specific operations to interface with
media 110. Buffer 150 might be a RAM buffer employed to
act as a cache for control processor 140 and/or as a read/write
buffer for operations between solid-state media 110 and host
device 180. For example, data might generally be temporarily
stored in bufter 150 during transfer between solid-state media
110 and host device 180 via I/O interface 160 and link 170.
Buffer 150 might be employed to group or split data to
account for differences between a data transfer size of com-
munication link 170 and a storage unit size (e.g., read unit
size, page size, sector size, or mapped unit size) of media 110.
Buffer 150 might be implemented as a static random-access
memory (SRAM) or as an embedded dynamic random-access
memory (eDRAM) internal to media controller 120, although
buffer 150 could also include memory external to media
controller 120 (not shown), which might typically be imple-
mented as a double-data-rate (e.g., DDR-3) DRAM.

Control processor 140 communicates with solid-state con-
troller 130 to control data access (e.g., read or write opera-
tions) data in media 110. Control processor 140 might be
implemented as one or more Pentium®, Power PC®, Ten-
silica® or ARM processors, or a combination of different
processor types (Pentium® is a registered trademark of Intel
Corporation, Tensilica® is a trademark of Tensilica, Inc.,
ARM processors are by ARM Holdings, plc, and Power PC®
is a registered trademark of IBM). Although shown in FIG. 1
as a single processor, control processor 140 might be imple-
mented by multiple processors (not shown) and include soft-
ware/firmware as needed for operation, including to perform
threshold optimized operations in accordance with described
embodiments. Control processor 140 is in communication
with low-density parity-check (LDPC) coder/decoder (co-
dec) 142, which performs LDPC encoding for data written to
media 110 and decoding for data read from media 110. Con-
trol processor 140 is also in communication with map 144,
which is used to translate between logical addresses of host
operations (e.g., logical block addresses (LBAs) for read/
write operations, etc.) and physical addresses on media 110.
As employed herein, the term LBA is synonymous with HPA
(Host Page Address).

Communication link 170 is used to communicate with host
device 180, which might be a computer system that interfaces
with NVM system 100. Communication link 170 might be a
custom communication link, or might be a bus that operates in
accordance with a standard communication protocol such as,
for example, a Small Computer System Interface (“SCSI”)
protocol bus, a Serial Attached SCSI (“SAS”) protocol bus, a
Serial Advanced Technology Attachment (“SATA”) protocol
bus, a Universal Serial Bus (“USB”), an Ethernet link, an
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IEEE 802.11 link, an IEEE 802.15 link, an IEEE 802.16 link,
a Peripheral Component Interconnect Express (“PCI-E”)
link, a Serial Rapid /O (“SRIO”) link, or any other similar
interface link for connecting a peripheral device to a com-
puter.

FIG. 2 shows an exemplary functional block diagram of a
single flash memory cell that might be found in solid-state
media 110. Flash memory cell 200 is a MOSFET with two
gates. The word line control gate 230 is located on top of
floating gate 240. Floating gate 240 is isolated by an insulat-
ing layer from word line control gate 230 and the MOSFET
channel, which includes N-channels 250 and 260, and
P-channel 270. Because floating gate 240 is electrically iso-
lated, any charge placed on floating gate 240 will remain and
will not discharge significantly, typically for many months.
When floating gate 240 holds a charge, it partially cancels the
electrical field from word line control gate 230 that modifies
the threshold voltage of the cell. The threshold voltage is the
amount of voltage applied to control gate 230 to allow the
channel to conduct. The channel’s conductivity determines
the value stored in the cell, for example by sensing the charge
on floating gate 240.

FIG. 3 shows an exemplary NAND MLC flash memory
string 300 that might be found in solid-state media 110. As
shown in FIG. 3, flash memory string 300 might include one
or more word line transistors 200(2), 200(4), 200(6), 200(8),
200(10),200(12),200(14), and 200(16) (e.g., 8 flash memory
cells), and bit line select transistor 304 connected in series,
drain to source. This series connection is such that ground
select transistor 302, word line transistors 200(2), 200(4),
200(6), 200(8), 200(10), 200(12), 200(14) and 200(16), and
bit line select transistor 304 are all “turned on” (e.g., in either
a linear mode or a saturation mode) by driving the corre-
sponding gate high in order for bit line 322 to be pulled fully
low. Varying the number of word line transistors 200(2),
200(4), 200(6), 200(8), 200(10), 200(12), 200(14), and 200
(16), that are turned on (or where the transistors are operating
in the linear or saturation regions) might enable MLC string
300 to achieve multiple voltage levels. A typical MLC NAND
flash might employ a “NAND string” (e.g., as shown in FIG.
3) of 64 transistors with floating gates. During a write opera-
tion, a high voltage is applied to the NAND string in the
word-line position to be written. During a read operation, a
voltage is applied to the gates of all transistors in the NAND
string except a transistor corresponding to a desired read
location. The desired read location has a floating gate.

As described herein, in both SLC and MLC NAND flash,
each cell has a voltage charge level (e.g., an analog signal)
that can be sensed, such as by comparison with a read thresh-
old voltage level. A media controller might have a given
number of predetermined voltage thresholds employed to
read the voltage charge level and detect a corresponding
binary value of the cell. For example, for MLC NAND flash,
if there are 3 thresholds (0.1, 0.2, 0.3), when a cell voltage
level is 0.0=cell voltage<0.1, the cell might be detected as
having a value of [00]. If the cell voltage level is 0.1=cell
voltage<0.2, the value might be [10], and so on. Thus, a
measured cell level might typically be compared to the
thresholds one by one, until the cell level is determined to be
in between two thresholds and can be detected. Thus, detected
data values are provided to a decoder of memory controller
120 to decode the detected values (e.g., with an error-correc-
tion code) into data to be provided to host device 180.

FIG. 4 shows a block diagram of an exemplary arrange-
ment of solid-state media 110 of FIG. 1. As shown in FIG. 4,
media 110 might be implemented with over-provisioning
(OP) to prevent Out-of-Space (OOS) conditions from occur-
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ring. As shown in FIG. 4, OP might be achieved in three ways.
First, SSD manufacturers typically employ the term “GB” to
represent a decimal Gigabyte but a decimal Gigabyte (1,000,
000,000 or 10° bytes) and a binary Gibibyte (1,073,741,824
or 2°° bytes) are not equal. Thus, since the physical capacity
of'the SSD is based on binary GB, if the logical capacity of the
SSD is based on decimal GB, the SSD might have a built-in
OP of 7.37% (e.g., [(2°°-10°)/10°]). This is shown in FIG. 4 as
“7.37%” OP 402. However, some of the OP, for example,
2-4% of the total capacity might be lost due to bad blocks
(e.g., defects) of the NAND flash. Secondly, OP might be
implemented by setting aside a specific amount of physical
memory for system use that is not available to host device
180. For example, a manufacturer might publish a specifica-
tion for their SSD having a logical capacity of 100 GB, 120
GB or 128 GB, based on a total physical capacity of 128 GB,
thus possibly achieving exemplary OPs of 28%, 7% or 0%,
respectively. This is shown in FIG. 4 as static OP (“0 to
28+%”) 404.

Third, some storage protocols (e.g., SATA) support a
“TRIM” command that enables host device 180 to designate
blocks of previously saved data as unneeded or invalid such
that NVM system 100 will not save those blocks during
garbage collection. Prior to the TRIM command, if host
device 180 erased a file, the file was removed from the host
device records, but the actual contents of NVM system 100
were not actually erased, which cased NVM system 100 to
maintain invalid data during garbage collection, thus reduc-
ing the NVM capacity. The OP due to efficient garbage col-
lection by employing the TRIM command is shown in FIG. 4
as dynamic OP 406. Dynamic OP 406 and user data 408 form
the area of media 110 that contains active data of host device
180, while OP areas 402 and 404 do not contain active data of
host device 180. The TRIM command enables an operating
system to notify an SSD of which pages of data are now
invalid due to erases by a user or the operating system itself.
During a delete operation, the OS marks deleted sectors as
free for new data and sends a TRIM command specifying one
or more ranges of Logical Block Addresses (LBAs) of the
SSD associated with the deleted sectors to be marked as no
longer valid.

After performing a TRIM command, the media controller
does not relocate data from trimmed LBAs during garbage
collection, reducing the number of write operations to the
media, thus reducing write amplification and increasing drive
life. The TRIM command generally irreversibly deletes the
data it affects. Examples of a TRIM command are the SATA
TRIM (Data Set Management) command, the SCSI UNMAP
command, the MultiMediaCard (MMC) ERASE command,
and the Secure Digital (SD) card ERASE command. Gener-
ally, TRIM improves SSD performance such that a fully
trimmed SSD has performance approaching that of a newly
manufactured (i.e., empty) SSD of a same type.

In general, media controller 120 executes commands
received from host device 180. At least some of the com-
mands write data to media 110 with data sent from host device
180, or read data from media 110 and send the read data to
host device 180. Media controller 120 employs one or more
data structures to map logical memory addresses (e.g., LBAs
included in host operations) to physical addresses of the
media. When an LBA is written in an SSD, the LBA is
generally written to a different physical location each time,
and each write updates the map to record where data of the
LBA resides in the non-volatile memory (e.g., media 110).
For example, in a system such as described in International
Patent Application no. PCT/US2012/049905 filed Aug. 8,
2012, media controller 120 employs a multi-level map struc-
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ture (e.g., map 144) that includes a leaf level and one or more
higher levels. The leaf level includes map pages that each has
one or more entries. A logical address, such as an LBA of an
attached media (e.g., media 110), is looked up in the multi-
level map structure to determine a corresponding one of the
entries in a particular one of the leaf-level pages. The corre-
sponding entry of the LBA contains information associated
with the LBA, such as a physical address of media 110 asso-
ciated with the LBA. In some implementations, the corre-
sponding entry further comprises an indication as to whether
the corresponding entry is valid or invalid, and optionally
whether the LBA has had the TRIM command run on it
(“trimmed”) or has not been written at all. For example, an
invalid entry is able to encode information, such as whether
the associated LBA has been trimmed, in the physical loca-
tion portion of the invalid entry.

To speed the look-up of LBAs, a cache (not shown) of at
least some of the leaf-level pages might be maintained. In
some embodiments, at least a portion of the map data struc-
tures are used for private storage that is not visible to host
device 180 (e.g., to store logs, statistics, mapping data, or
other private/control data of media controller 120).

As described herein, map 144 converts between logical
data addressing used by host device 180 and physical data
addressing used by media 110. For example, map 144 con-
verts between LBAs used by host device 180 and block and/or
page addresses of one or more flash dies of media 110. For
example, map 144 might include one or more tables to per-
form or look up translations between logical addresses and
physical addresses.

Data associated with each LBA is stored at a corresponding
physical address of media 110, either in a fixed, non-com-
pressed size, or in a respective, compressed size. As described
herein, a read unit is a finest granularity of media 110 that is
independently readable, such as a portion of a page of media
110. The read unit might include (or correspond to) check bits
and/or redundancy data of an error-correcting code (ECC)
along with all data protected by the ECC. FIG. 5 illustrates
selected details of an embodiment of mapping an LPN por-
tion of an LBA by map 144. As shown in FIG. 5, LBA 506
includes Logical Page Number (LLPN) 502 and logical offset
504. Map 144 translates LPN 502 into map data 512, which
includes read unit address 508 and length in read units 510
(and perhaps other map data, as indicated by the ellipsis).
Map data 512 might typically be stored as a map entry into a
map table of map 144. Map 144 might typically maintain one
map entry for each LPN actively in use by system 100. As
shown, map data 512 includes read unit address 508 and
length in read units 510. In some embodiments, a length
and/or a span are stored encoded, such as by storing the length
of'the data associated with the LPN as an offset from the span
in all (or a portion) of length in read units 510. The span (or
length in read units) specifies a number of read units to read to
retrieve the data associated with the LPN, whereas the length
(of the data associated with the LPN) is used for statistics,
such as Block Used Space (BUS) to track an amount of used
space in each block of the SSD. Typically, the length has a
finer granularity than the span.

In some embodiments, a first LPN is associated with a first
map entry, a second LPN (different from the first LPN, but
referring to a logical page of a same size as the logical page
referred to by the first LPN) is associated with a second map
entry, and the respective length in read units of the first map
entry is different from the respective length in read units of the
second map entry. In such embodiments, at a same point in
time, the first LPN is associated with the first map entry, the
second LPN is associated with the second map entry, and the
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respective read unit address of the first map entry is the same
as the respective read unit address of the second map entry
such that data associated with the first LPN and data associ-
ated with the second LPN are both stored in the same physical
read unit of media 110.

In various embodiments, map 144 is one of: a one-level
map; a two-level map including a first level map (FLM) and
one or more second level (or lower level) maps (SLMs) to
associate the LBAs of the host protocol with the physical
storage addresses in media 110. For example, as shown in
FIG. 6, FLM 610 is maintained on-chip in media controller
120, for example in map 144. In some embodiments, a non-
volatile (though slightly older) copy of FLM 610 is also
stored on media 110. Each entry in FLM 610 is effectively a
pointerto a SLM page (e.g., one of SLMs 616). SLMs 616 are
stored in media 110 and, in some embodiments, some of the
SLMs are cached in an on-chip SLM cache of map 144 (e.g.,
SLM cache 608). An entry in FLM 610 contains an address
(and perhaps data length/range of addresses or other informa-
tion) of the corresponding second-level map page (e.g., in
SLM cache 608 or media 110). As shown in FIG. 6, map
module 144 might include a two-level map with a first-level
map (FLM) 610 that associates a first function (e.g., a quo-
tient obtained when dividing the LBA by the fixed number of
entries included in each of the second-level map pages) of a
given LBA (e.g., LBA 602) with a respective address in one of
a plurality of second-level maps (SLMs) shown as SLM 616,
and each SLM associates a second function (e.g., a remainder
obtained when dividing the LBA by the fixed number of
entries included in each of the second-level map pages) of the
LBA with a respective address in media 110 corresponding to
the LBA.

For example, as shown in FIG. 6, translator 604 receives an
LBA (LBA 602) corresponding to a host operation (e.g., a
request from host 180 to read or write to the corresponding
LBA on media 110). Translator 604 translates LBA 602 into
FLM index 606 and SLM Page index 614, for example, by
dividing LBA 602 by the integer number of entries in each of
the corresponding SLM pages 616. In described embodi-
ments, FLM index 606 is the quotient of the division opera-
tion, and SLM Page index 614 is the remainder of the division
operation. Employing the dividing operation allows for SLM
pages 616 to include a number of entries that is not a power of
two, which might allow SLM pages 616 to be reduced in size,
lowering write amplification of media 110 due to write opera-
tions to update SLM pages 616. FLM index 606 is used to
uniquely identify an entry in FLLM 610, the entry including an
SLM page index (614) corresponding to one of SLM pages
616. As indicated by 612, in instances where the SLM page
corresponding to the SLM page index of the FLM entry is
stored in SLM cache 608, FLM 610 might return the physical
address of media 110 corresponding to LBA 602. SLM page
index 614 is used to uniquely identify an entry in SLM 616,
the entry corresponding to a physical address of media 110
corresponding to LBA 602, as indicated by 618. Entries of
SLM 616 might be encoded as a read unit address (e.g., the
address of an ECC-correctable sub-unit of a flash page) and a
length of the read unit.

SLM pages 616 (or a lower-level of a multi-level map
(MLM) structure) might all include the same number of
entries, or each of SLM pages 616 (or a lower-level of a MLM
structure) might include a different number of entries. Fur-
ther, the entries of SLM pages 616 (or a lower-level ofa MLM
structure) might be the same granularity, or the granularity
might be set for each of SLM pages 616 (or a lower-level of a
MLM structure). In exemplary embodiments, FLM 610 has a
granularity of 4 KB per entry, and each of SLM pages 616 (or
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a lower-level of a MLM structure) has a granularity of 8 KB
per entry. Thus, for example, each entry in FLM 610 is asso-
ciated with an aligned eight-sector (4 KB) region of 512B
LBAs and each entry in one of SLM pages 616 is associated
with an aligned sixteen-sector (8 KB) region of 512B LBAs.

In some embodiments, entries of FLM 610 (or a higher-
level map of an MLLM structure) include the format informa-
tion of corresponding lower-level map pages. FIG. 7 shows a
block diagram of exemplary FLLM 700. As shown, each of the
N entries 701 of FLM 700 includes format information of a
corresponding lower-level map page. As shown, FLM 700
might include SLM page granularity 702, read unit physical
address range 704, data size for each LBA 706, data invalid
indicator 708, TRIM operation in progress indicator 710,
TRIM LBA range 712 and To-Be-Processed (TBP) indicator
714. Other metadata (not shown) might also be included. Map
page granularity 702 indicates the granularity of the SLM
page corresponding to the entry of FLM 700. Read unit physi-
cal address range 704 indicates the physical address range of
the read unit(s) of the SLM page corresponding to the entry of
FLM 700, for example as a starting read unit address and
span. Data size for each LBA 706 indicates a number of read
units to read to obtain data of associated LBAs or a size of data
of'the associated LBAs stored in media 110 for the SLM page
corresponding to the entry of FLM 700. Data invalid indicator
708 indicates that the data of the associated LBAs is not
present in media 110, such as due to the data of the associated
LBAs already being trimmed or otherwise invalidated. In
alternative embodiments, data invalid indicator might be
encoded as part of read unit physical address range 704. As
will be described in greater detail below, TRIM operation in
progress indicator 710 indicates that a TRIM operation is in
progress on the LBAs indicated by TRIM LBA range 712. In
some embodiments, TRIM operation in progress indicator
710 might be encoded as part of TRIM LBA range 712. TBP
indicator 714 indicates when LBAs associated with the map
page are already invalidated (e.g., appear trimmed to host
180), but the LBAs are not yet available to be written with new
data. In contrast with marking a higher-level map entry
invalid, setting the TBP bit of the higher-level map entry does
not imply that a physical address of the lower-level map page
stored in the higher-level map entry is invalid—the physical
address is required, and the lower-level map page itself can-
not be de-allocated, until the lower-level map page is pro-
cessed for BUS updates. Lower-level map pages thus might
be in one of three states: invalid, valid, or TBP.

An SSD employing a multi-level map (MLM) structure
such as described herein enables an improved TRIM opera-
tion that spans over multiple leaf-level map units. Thus,
instead of invalidating individual LBA entries as for a stan-
dard TRIM operation, the improved TRIM operation can
invalidate entire leaf units in a higher map level of the MLM
structure. This reduces latency of the TRIM operation from
perspective of a host device coupled to media controller 120,
advantageously allowing higher system performance. How-
ever, simply discarding individual trimmed LBA entries in
the leaf-level maps could incur inaccuracy in Block Used
Space (BUS) accounting, since trimmed LBAs still appear as
contributing to BUS. The BUS count is maintained by media
controller 120 in media 110 for each region of the non-
volatile memory of the SSD, such as per flash block or group
of flash blocks, as one way to determine when to perform
garbage collection on a given block or group of blocks (e.g.,
the one with the least BUS) thus reducing garbage collection
write amplification. Thus, an inaccuracy in BUS could result
in inaccurate garbage collection and/or an increased number
of writes to media 110, thus increasing write amplification
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and reducing SSD life. The improved TRIM operation is able
to perform fast trimming of LBAs while also maintaining
BUS accuracy by updating the BUS count in the background
after acknowledging the TRIM operation to the host device.

In described embodiments, the TRIM operation updates
the MLM structure to mark all trimmed LBAs as invalid.
Further, the TRIM operation subtracts flash space previously
used by trimmed LBAs from the BUS count of corresponding
regions of media 110 to provide accurate garbage collection.
Thus, to trim a particular LBA properly, two things are done:
the particular LBA is invalidated in MLM structures, and the
BUS count is updated reflecting that the particular LBA no
longer consumes flash space. However, for a large trim region
(e.g., the entire SSD) or a plurality of large trim regions, the
time required to perform the invalidations and the BUS
updates can become large and negatively impact system per-
formance.

As described herein, the SLM page information stored in
the FLM might include an indication (e.g., To-Be-Processed
(TBP) indicator 714) indicating when LBAs within corre-
sponding SLM pages are already invalidated (e.g., appear
trimmed to host 180), but the BUS update portion of the
TRIM operation is not yet complete. In contrast with marking
a higher-level map entry invalid, setting the TBP indicator of
the higher-level map entry does not imply that a physical
address of the lower-level map page stored in the higher-level
map entry is invalid: the physical address is required, and the
lower-level map page itself cannot be de-allocated, until the
lower-level map page is processed for BUS updates. How-
ever, all user data associated with the higher-level map entry
is invalid with respect to host read operations, the same as if
the higher-level map entry was marked invalid.

The size of the data of the associated LBAs stored in media
110 (e.g., 706) is used to update the BUS value for the corre-
sponding regions when SSD 101 performs a TRIM operation.
For example, the size values are subtracted from the BUS
count of corresponding regions. In embodiments employing a
MLM structure, updating the BUS count can be time consum-
ing since updating the BUS count requires processing leaf-
level map entries one by one. To improve processing time,
described embodiments employ a Mega-TRIM operation that
updates BUS counts of corresponding regions of media 110 in
a background operation mode of SSD 101.

For example, when SSD 101 receives a TRIM command
from host 180, media controller 120 performs a Mega-TRIM
operation that sets the respective TBP indicator (e.g., 714) of
FLM entries (e.g., 701) corresponding to SLM page(s) asso-
ciated with the TRIM command. If the TRIM operation
affects only a portion of the SLM entries in the SLM page,
some embodiments might process the individual entries of the
partial SLM page by updating each partial SLM page by
marking the trimmed SLM entries invalid and updating the
BUS count to reflect the trimmed portion of the SLM page.
Other embodiments might defer updating the partial SLM
pages by employing the TBP indicator (e.g., 714), a TRIM
operation in progress indicator (e.g., 710) and TRIM LBA
range (e.g., 712), allowing deferral of marking the trimmed
SLM entries invalid and updating the BUS count. Then, a
subsequent partial TRIM operation of a partially-trimmed
SLM page optionally and/or selectively performs some or all
of the update operations to the partially-trimmed SLM page
immediately to avoid needing to track multiple sub-ranges in
a given TRIM LBA range (e.g., 712). However, alternative
embodiments might track multiple sub-ranges in TRIM LBA
range (e.g., 712), allowing longer deferral of marking the
trimmed SLM entries invalid and updating the BUS count.
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When a Mega-TRIM operation is performed, after invali-
dating the associated LBAs, SSD 101 might acknowledge the
TRIM command to host 180 before the BUS count is updated.
Updating the BUS count is then performed in a background
process of SSD 101 (typically completing within a range of
several seconds to several minutes depending on TRIM range
and the amount of activity initiated by host 180). Each time
one of the SLM pages having the TBP indicator set in the
associated FLM entry is completely processed (e.g., marking
the trimmed SLM entries invalid and updating the BUS count
for all SLM entries in the trimmed SLM page), the TBP
indicator in the associated FLLM entry is cleared. If all of the
SLM entries of one of the SLM pages are trimmed, the asso-
ciated FLM entry is marked as trimmed, obviating a need to
process the SLM page further until a new write validates at
least one entry within the SLM page.

FIG. 8 shows a flow diagram of Mega-TRIM operation
800. As shown in FIG. 8, at step 802 a TRIM operation request
is received by SSD 101 from host 180. At step 804, SSD 101
determines a range of the TRIM operation (e.g., one or more
starting LBAs and ending . BAs). SSD 101 might maintain a
beginning TBP index (min_flm_index_tbt) and an ending
TBP index (max_flm_index_tbt) of the FLLM indicating por-
tions of the FLLM for which the TBP indicator is set, indicating
the portion of the FLM requiring background operations to
update the BUS count and make memory blocks of media 110
re-available to host 180. In the background (e.g., during oth-
erwise idle time of SSD 101), SSD 101 might examine the
FLM entry at the beginning TBP index and if TBP is set on
that FLM entry, read the associated SLM page and trim that
whole SLM page by updating the BUS count according to
each entry in the associated SLM page, clearing the TBP
indicator in the FLLM entry, and marking the FLM entry as
trimmed, indicating the entire SLM page is trimmed The
beginning TBP index (min_flm_index_tbt) is updated to indi-
cate that the entry has been processed.

As shown in FIG. 8, when a TRIM command having a trim
range (e.g., one of the 64-per-sector NCQ trim ranges for
SATA) is processed, at step 806 SSD 101 determines whether
at least one of the first SLM page of the TRIM range and the
last SLM page of the TRIM range is a partial SLM page (e.g.,
the TRIM range only applies to part of the SLM page). If, at
step 806, there are partial SLM pages at the start or end of the
range, then at step 808, SSD 101 determines whether the
partial SLM page is stored in cache 608. If, at step 808, the
partial SLM page at the start or end of the TRIM range is
stored in cache 608, then process 800 proceeds to step 812. If,
at step 808, the partial SLM page at the start or end of the
TRIM range is not stored in cache 608, then at step 810 SSD
101 fetches the partial SLM page from media 110 into cache
608 and process 800 proceeds to step 812. At step 812, the
TRIM operation is performed for the entries of the partial
SLM page that are within the range of the TRIM operation.
For example, the SLM page entries in the TRIM range are
updated corresponding to any LBAs in the TRIM range in the
partial SLM page. Updating an entry in the SLM page
includes setting the data invalid indicator and updating the
BUS count. Process 800 proceeds to step 820.

If, at step 806, the SL.M page is not a partial SLM page, at
step 814, SSD 101 determines whether the full SLM page is
stored in cache 608. If, at step 814, the full SLM page is stored
in cache 608, then process 800 proceeds to step 816. If, at step
814, the full SLM page is not stored in cache 608, then at step
818 SSD 101 sets the TBP indicator in the FLM correspond-
ing to the SLM page (e.g., 714). Process 800 proceeds to step
820.
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When an SLM page needs to be fetched from media 101, if
TBP is set in the associated FLLM entry, then the SLM page is
fully invalidated (all entries within the SLM page are treated
asinvalid with respect to host accesses), but the SLM page has
not yet been processed for BUS update purposes. For a read,
the SLM page is not needed (all data referenced by that SLM
page is trimmed), and fetching the SLM page is not required.
For a write, the SLM page is fetched, the BUS count is
updated for all LBAs in the SL.M page, all entries in the SLM
page are invalidated, and then the SLM entries are updated
within the SLM page that are being written. At step 816, a
subset of the operations for a write are performed: the BUS
count is updated for all LBAs in the SLM page, and all entries
in the SLM page are invalidated.

At step 822, SSD 101 determines a range of entries of the
FLM having the TBP indicator set (e.g., min_flm_index_tbt
and max_flm_index_tbt), indicating the portion of the FLM
requiring background operations to update the BUS count
and make memory blocks of media 110 re-available to host
180. At step 824, the remainder of the TRIM operation (e.g.,
updating the BUS count and releasing the memory blocks as
usable by host 180) occurs in the background (e.g., during
otherwise idle time of SSD 101). SSD 101 might maintain
one or more pointers that are updated as memory blocks are
trimmed at step 816 (e.g., as their BUS count is updated) to
ensure the new TRIM range is remembered as blocks are
processed. For example, SSD 101 might examine the FLM
entry at the beginning TBP index and if TBP is set on that
FLM entry, read the associated SLM page and trim that whole
SLM page by updating the BUS count, clearing the TBP
indicator in the FLLM entry, and marking the FLM entry as
trimmed, indicating the entire SLM page is trimmed The
beginning TBP index (min_flm_index_tbt) isupdated to indi-
cate that the entry has been processed. When the background
TRIM operation at step 824 is complete, the TRIM operation
is acknowledged to host 180. At step 826, process 800 com-
pletes.

In embodiments employing a two-level map structure or an
MLM structure, one or more lower-level map pages (e.g.,
SLM pages 616 or leaf-level map pages of an MLM), are
stored in a cache of map 144 (shown in FIG. 6 as SLM cache
608). For example, in a two-level map such as shown in FIG.
6, FLLM index 606 is used to uniquely identify one of SLM
pages 616. According to various embodiments, one or more
caching techniques are used to look-up the FLM index and
determine if the corresponding SLM page is in the cache (a
hit) or is not (a miss). A fully associative cache, such as using
a Content-Addressable Memory (CAM) for the look-up,
might be used in some implementations. For example, the
CAM might operate substantially as described in related to
U.S. patent application Ser. No. 13/600,464 filed Aug. 31,
2012. In other embodiments, other cache structures, such as a
multi-way set-associative cache, can be employed such that
each entry has an associated index or address used to track
information associated with the SLM page currently in the
cache at that index or address.

SLM pages are said to “hit” or “miss” in SLM cache 608
according to whether the FLM index corresponding to the
SLM page hits or misses in the CAM. SLM entries that hit in
SLM cache 608 return a corresponding cache index, such as
the entry in SLM cache 608 in which a matching FL.M index
was found. The returned FLM index identifies a correspond-
ing data structure associated with the SLM page currently in
the cache at that index. SLM entries that miss in SLM cache
608 might then fetch the corresponding SLM page from
media 110 to be stored to SLM cache 608.

10

15

20

25

30

35

40

45

50

55

60

65

14

SLM pages are added to and/or removed from the cache,
such as more recently accessed SLM pages replacing less
recently accessed SLM pages, as part of a cache management
algorithm. SLM pages stored in SLM cache 608 are in a clean
state (“clean”) or a dirty state (“dirty”). A dirty SLM page is
an SLM page that is modified (and, thus, more current) in
SLM cache 608 than as stored on media 110 and, thus, out-
of-date on media 110. A clean SLM page is one where the
same version is stored in both SLM cache 608 and on media
110 and, thus, is up-to-date on media 110. As additional or
new SLM pages are written into SLM cache 608, SLM cache
608 replaces empty entries or clean SLM pages rather than
flushing (e.g., writing back to media 110) and replacing dirty
SLM pages in order to reduce a number of writes to media
110.

In some embodiments, a data structure comprising a plu-
rality of entries is associated with SLM cache 608, with a
respective entry of the data structure for each index of SLM
cache 608. Each of the SLM pages currently stored in SLM
cache 608 has a respective data structure entry, such as data
structures 900(1)-900(N) shown in FIG. 9. Each entry of the
data structure might generally include the data of the cached
SLM page (shown as 902), valid indicator 904, clean/dirty
indicator 906, pending lock indicator 908, flush lock indicator
910, per-entry lock indicators for each entry of the corre-
sponding SLM page shown as 912, last sequential access
offset 914, sequential access counter 916, and other control
data shown generally as 918. As described below, lock indi-
cators 908, 910 and 912 are used to, at least in part, implement
a set of ordering rules applied to requests accessing SLM
cache 608. In some embodiments, SLM page entry lock indi-
cators 912 might include 1 lock indicator per each SLM page
entry. In other embodiments, SLM page entry lock indicators
912 might be a pool of indicators equal to or smaller in
number than the number of map entries per SLM page. In a
first example, there could be a fixed-size pool that is shared as
needed. In a second example, the granularity of the lock bits
could be equal to or less than one per map entry, such as one
lock bit for every n map entries (where n is greater than or
equalto 1).

FIG. 10 shows a flow diagram illustrating host request
processing algorithm 1000. At step 1002, a request from host
180 is received by SSD 101 (e.g., by VO interface 160). In
some embodiments, process 1000 might generally be per-
formed serially for each request received by SSD 101 from
host 180. In other embodiments, process 1000 might gener-
ally be performed in parallel for two or more requests
received by SSD 101 from host 180. In yet other embodi-
ments, a request received by SSD 101 from host 180 is option-
ally and/or selectively split into one or more sub-requests of
no more than a specified length, and process 1000 is per-
formed serially and/or substantially in parallel on each of the
sub-requests. Additionally, SSD 101 (e.g., by /O interface
160) might include one or more queues to enqueue requests
from host 180 that would violate ordering rules for access to
media 110 or the various map structures of map 144. Requests
are optionally and/or selectively enqueued on a determined
one of the queues in arrival order, and are removed from the
determined queue in a same order as the requests were
enqueued (e.g., first-in, first-out). Service order among the
queues might be based, at least in part, on events such as
fetching a leaf-level map page into the cache. As will be
described, ordering rules might be enforced by lock indica-
tors of the various map structures of map 144.

Requests from host 180 include an address, a length, and a
request type. The request type indicates whether the request is
a read request (e.g., to read data of the given length starting
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from the given address), a write request (e.g., to write data of
the given length starting at the given address), and optionally
other types of commands, such as management requests (e.g.,
aTRIM operation, etc.). The address specifies a starting LBA
of the request. As described herein, the LBA is translated by
map 144 into a physical address of media 110. Thus, the LBA
is associated with a respective one or more of a plurality of
leaf-level pages of a multi-level map (e.g., SLMs 616 of FIG.
6), with lower-level map pages including a plurality of map
entries, one or more of which are associated with the LBA,
based on the given length of the request. At step 1004, SSD
101 (e.g., map 144) determines the map page associated with
the LBAs of the received request (e.g., based on the address
and the length of the request). As described, a MLM structure
might be employed where an associated entry in FLM 610
points to an entry in one of SLMs 616, where the entry in SLM
616 determines the physical address in media 110 associated
with the LBA. The SLMs are stored on media 110, although
a subset of the SLMs might be cached in SL.M cache 608, for
example, a number of most recently used SLMs (e.g., a num-
ber of the most recently accessed leaf-level map pages) or a
number of most frequently accessed SLMs (e.g., a number of
the most commonly accessed leaf-level map pages over a
given time period). Depending on the length of the request,
parts of process 1000 might be repeated if the length of the
request spans map pages and/or map page entries (e.g., gen-
erally steps 1006-1046), while other parts of process 1000 are
performed once for the request independent of the request
length (e.g., shown generally as steps 1002-1004, 1030 and
1044).

At step 1006, map 144 determines whether the associated
SLMs are stored in SLM cache 608 (e.g., a cache hit). For
example, the look-up determines if an index in a higher-level
map and associated with the respective leaf-level page is
present in a look-up table, such as a CAM, of SLM cache 608.
If, at step 1006, there is a cache hit, then at step 1016, SLM
cache 608 determines (e.g., based on pending lock indicator
908 and flush lock indicator 910) whether the entry of SLM
cache 608 storing the lower-level map page is locked. If, at
step 1016, the cache entry is locked, then at step 1018, the
received request is queued until the cache entry is unlocked
and available for processing. If, at step 1016, the cache entry
is not locked, then at step 1020, map 144 determines if the
corresponding entries of the lower-level map are locked (e.g.,
based on SLM page entry lock indicators 912). If, at step
1020, the entries of the lower-level map are locked, then at
step 1022, the received request is queued until the entries of
the lower-level map are unlocked and available for process-
ing. If the respective lower-level map page is present (e.g.,
step 1006) and is not locked (e.g., steps 1016 and 1020), then,
at step 1024, SLM cache 608 provides the map data of the
corresponding lower-level map (e.g., the physical address(es)
corresponding to the LBA(s) of the request received at step
1002). In described embodiments, if the respective lower-
level map page is present in SLM cache 608 but is locked
(e.g., steps 1016 and 1020), the request is enqueued, such as
on a particular queue associated with either the respective
lower-level map page or the respective cache entry, awaiting
the clearing of the lock (e.g., steps 1018 and 1022).

If, at step 1006, the respective lower-level map page is not
present in SLM cache 608 (e.g., a cache miss), then at step
1008, a location in the cache is allocated to store the respec-
tive lower-level map page. At step 1010, the pending lock
indicator (e.g., 908) of the cache entry is set and at step 1012,
the lower-level map page is read from media 110 and stored in
the allocated cache entry. Although not shown in FIG. 10, in
some embodiments, while the lower-level map page is read
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from media 110, the request might be enqueued, such ason a
queue associated with either the respective lower-level map
page or the respective cache entry until the leaf-level map
page is stored in cache 608. On completion of storing of the
lower-level map page into SLM cache 608, at step 1014 the
pending lock indicator is cleared, the valid indicator (e.g.,
valid indicator 904) is set to indicate that cache entry contains
a valid leaf-level map page, and the arriving request is
dequeued and is allowed to proceed to step 1016.

After SLM cache 608 provides the map data of the corre-
sponding lower-level map (e.g., the physical address(es) cor-
responding to the LBA(s) of the request received at step 1002)
at step 1024, at step 1026, if the request received at step 1002
is a request to write to media 110, process 1000 continues to
step 1028. If, at step 1026, the request received at step 1002 is
not a request to write to media 110 (e.g., it is a request to read
from media 110 or a management command), process 1000
continues to step 1044. At step 1044, the operation of the
request is performed based on the lower-level map data
returned at step 1024 (e.g., the physical address(es) corre-
sponding to the LBA(s) of the request received at step 1002).
For example, data located at the LBA(s) of the request
received at step 1002 is read from media 110 and sent to host
180. Once the operation of the request is complete at step
1044, process 1000 completes at step 1046.

If, at step 1026, the request received at step 1002 is a
request to write to media 110, at step 1028, the map entry lock
indicator for the lower-level map page entries associated with
the request (e.g., SLM page entry lock indicators 912) are set
to indicate that data stored in the associated map entries might
change corresponding to the write operation that is in-pro-
cess. In some embodiments, one or more of steps 1006, 1016,
1020, 1024, 1026, and 1028 are performed by a look-up
engine. For example, as described in U.S. patent application
Ser. No. 13/600,464 filed Aug. 31, 2012 and incorporated by
reference herein, an upper-level map index (e.g., a first-level
map index of atwo-level map) and a leaf-level map page entry
number (e.g., a second-level map page entry number of a
two-level map) are input to the look-up engine, and the look-
up engine is enabled to one or more of: return the upper-level
map entry if the leaf-level map page associated with the
upper-level map index is not found in the cache; return the
leaf-level map entry associated with the upper-level map
index and the leaf-level map page entry number if the leaf-
level map page associated with the upper-level map index is
found in the cache; update and/or return one or more status
bits, such as lock bits, valid bits, and/or dirty bits, of the
leaf-level map page and/or the leaf-level map entry; allocate
an entry in the cache; lock an entry in the cache; and other
activities related to look-up in and/or management of the
cache.

At step 1030, the write operation is performed based on the
lower-level map data returned at step 1024 (e.g., the physical
address(es) corresponding to the LBA(s) of the request
received at step 1002). For example, data sent from host 180
is written to the LBA(s) of media 110. At step 1032, the map
entries associated with the LBAs of the write operation are
updated (e.g., in one or more SLM pages) by map 144. For
example, the map page data entries such as shown in FIG. 7
are updated for the associated SLM pages. At step 1034, the
map entry lock indicator for the lower-level map page entries
associated with the request (e.g., SLM page entry lock indi-
cators 912) are cleared to indicate that the associated map
entries are up-to-date, and the dirty indicator (e.g., clean/dirty
indicator 906) for the associated SLM pages is set to indicate
that the associated SLM pages stored in SL.M cache 608 have
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been updated versus the copy of the same SLM pages stored
on media 110. Process 1000 then proceeds to step 1036.

In order to allocate an entry to store the respective lower-
level map page in SLM cache 608, it might be necessary to
replace a lower-level map page already stored in the cache
with a new map page. Thus, in some embodiments, updated
(“dirty””) map pages might periodically be written back to
media 110 (as shown by steps 1036-1042), for example when
a given threshold number of lower-level map pages are dirty,
or after an elapsed period of time. Thus, by keeping at least a
minimum number of lower-level map pages stored in cache
608 “clean” (e.g., stored to media 110 in its current state), any
lower-level map page that is not dirty could be selected to be
over-written to store a new lower-level map page (e.g., at step
1008). In some embodiments, map 144 might select a least
recently used one of the clean entries to be replaced by a new
SLM map page.

For example, at step 1036, map 144 determines whether a
number of dirty entries in SLM cache 608 has reached a
threshold number (e.g., to maintain a minimum number of
clean entries). If, at step 1036 the dirty threshold has not been
reached, then process 1000 completes at step 1046. If, at step
1036 the dirty threshold has been reached, then at step 1038
the flush lock indicator (e.g., 910) of one or more of the dirty
lower-level map pages is set to indicate that the respective
map page is in the process of being flushed to media 110. At
step 1040, the one or more dirty lower-level map pages are
“flushed”, or written back, to media 110. Dirty lower-level
map pages are flushed from cache 608 to media 110 to pre-
serve any changes in the dirty lower-level map page. At step
1042, the flush lock indicator of the one or more map pages is
cleared to indicate that the flush is complete, and the formerly
dirty cache entry is now clean (e.g., the version stored on
media 110 is up-to-date with the version stored in cache 608).
Process 1000 then completes at step 1046.

FIG. 11 illustrates an example of the application of the lock
bits and the effect on ordering. In some embodiments, process
1100 of FIG. 11 enables tracking a number of separate
sequential access streams, such as one stream for each of the
leaf-level pages stored in SLM cache 608. Process 1100
might generally be performed once for each received request,
or each sub-request of the request as described with reference
to FIG. 10. At step 1102, one of a series of requests from host
180 is received by SSD 101 (e.g., by /O interface 160).
Requests from host 180 include an address, a length, and a
request type. As described herein, the address specifies a
starting LBA of the request that, in conjunction with the
length, is used by map 144 to determine associated lower-
level map pages and, thus, a physical address of media 110 for
the request. At step 1104, map 144 determines one or more
leaf-level map pages associated with the received request, For
example, the received request is associated with a respective
entry in a first (generally lowest-addressed) leaf-level map
page corresponding to the starting address of the request, and,
based on the length of the request, is also associated with a
respective entry in a second (generally highest-addressed)
leaf-level map page corresponding to the ending address of
the request. In other words, the respective address and respec-
tive length correspond to a range of the map entries in one or
more leaf-level map pages. Depending on the address and the
length, the first leaf-level map page and the second leaf-level
page might be the same map page. Further, if the respective
length of the request is less than or equal to the granularity
size of the map entry, the first map entry and the second map
entry might be the same entry.

At step 1106, an arriving one of the requests is looked up in
SLM cache 608 to determine if the one or more leaf-level
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pages are stored in the cache (e.g., hit or miss). If, at step 1106,
one or more of the respective leaf-level map pages of the
request are not present in cache 608, then at step 1108 loca-
tions are allocated in the cache for each leaf-level map page
that is not already present in cache 608. At step 1110, the
missing leaf-level map pages are fetched from media 110 and,
at step 1112 a test is made to determine if the first leaf-level
page was already present in cache 608 and, thus, did not have
to be fetched from media 110. If, at step 1112, the first
leaf-level map page was not already present in cache 608 and
had to be fetched from media 110, then the arriving request
cannot continue, and at step 1114 the sequential access
counter (e.g., 916) of the last leaf-level map page is set to 1
indicating that there has been only one sequential access of
map pages. Further, the respective sequential access offset
(e.g., 914) of the last leaf-level map page is set to the offset of
the last map entry (e.g., in the last leaf-level map page). If, at
step 1112, the first leaf-level map page (or all of the respective
leaf-level map pages of the request) are present in cache 608,
then at step 1116 a test is made to see if the offset of the first
map entry is immediately after the respective sequential
access offset of the first leaf-level map page (e.g., whether the
address of the request is the next address after the address
stored in 914). That is, this test determines if the arriving
request starts where a previous one of the requests accessing
the first leaf-level page ended. If the arriving request does not
start where a previous one of the requests accessing the first
leaf-level page ended (1116 NO), then similar processing as if
the first leaf-level page was not already present and had to be
fetched occurs at step 1114 where the sequential access
counter (e.g., 916) of the last leaf-level map page is set to 1
indicating that there has been only one sequential access of
map pages.

If, at step 1116, the arriving request does start where a
previous one of the requests accessing the first leaf-level map
page ended, then at step 1120, the respective sequential
access counter (e.g., 916) of the last leaf-level map page is set
to 1 more than the respective sequential access counter of the
first leaf-level map page, and the respective sequential access
offset (e.g., 914) of the last leat-level page is set to the offset
of the last map entry. Incrementing the sequential access
counters in this manner enables sequential detection to oper-
ate across leaf-level map page boundaries. In various embodi-
ments, the sequential access counters saturate at a maximum
value. In further embodiments, if the first leaf-level page is
not a same one of the leaf-level map pages as the last leaf-level
map page, then the respective sequential access counter (e.g.,
916) of all of the respective leaf-level map pages of the
arriving request except the last leaf-level map page are
cleared. Then, at step 1122, a test is performed to determine if
a sequential access has been detected. If, at step 1122, a
sequential access is detected, then, at step 1124, a prefetch
mode is enabled for the arriving request. According to various
embodiments, the test is based on one or more of: the length
of the request being equal to or larger than a specified length
value; the sequential access counter being equal to or larger
than a specified sequential access count value; the offset in the
last leaf-level map page; the number of entries in each leaf-
level map page; and other factors.

Enabling the prefetch mode one or more of: optimizes
fetching of data and/or map pages from media 110; preserves
data and/or map pages fetched from media 110 that would
otherwise be discarded; prefetches data and/or map pages
from media 110; and other performance optimizations. In
various embodiments, if the respective sequential access off-
set of the last leaf-level page (after being set to the offset of the
last map entry) is “too close” to a final map entry in the last
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leaf-level page, such as by being within the respective length
of the arriving request of the final map entry at step 1126,
then, at step 1128, one or more sequential leaf-level pages are
prefetched from media 110. In a multi-level map, fetching
leaf-level pages requires referencing higher-level pages of the
map, which possibly also need to be fetched from media 110.
In some embodiments, a number of the leaf-level pages that
are fetched is based on the length of the request and/or the
sequential access counter. At step 1130, process 1100 com-
pletes.

In some embodiments, sequential access also tracks a
sequential request type, such as having additional state in the
entries of the data structure comprising a type of last access
field. In addition to the sequential access offset having to
match to determine an access is sequential, the type of last
access field must match as well. In various embodiments,
additional state in the entries of the data structure enables
tracking a plurality of sequential access streams in each of the
leaf-level pages stored in cache 608. For example, it is desir-
able in some usage scenarios of SSD 101 to separately track
sequential read streams and sequential write streams.

Thus, as described herein, described embodiments provide
a media controller that processes requests from a host device
that include a logical address and address range. A map of the
media controller determines physical addresses of a solid-
state media associated with the logical address and address
range of the request. The map is a multi-level map having a
plurality of leat-level map pages that are stored in the solid-
state media, with a subset of the leaf-level map pages stored in
a map cache. Each leaf-level map page includes map entries
that are each associated with physical addresses of the solid-
state media. Based on the logical address and address range,
it is determined whether a corresponding leaf-level map page
is stored in the map cache. Ifthe leaf-level map page is stored
in the map cache, a cache index and control indicators of the
map cache entry are returned in order to enforce ordering
rules that selectively enable access to a corresponding leaf-
level map page based on the control indicators and a deter-
mined request type.

Reference herein to “one embodiment” or “an embodi-
ment” means that a particular feature, structure, or character-
istic described in connection with the embodiment can be
included in at least one embodiment. The appearances of the
phrase “in one embodiment” in various places in the specifi-
cation are not necessarily all referring to the same embodi-
ment, nor are separate or alternative embodiments necessarily
mutually exclusive of other embodiments. The same applies
to the term “implementation.”

As used in this application, the word “exemplary” is used
herein to mean serving as an example, instance, or illustra-
tion. Any aspect or design described herein as “exemplary” is
not necessarily to be construed as preferred or advantageous
over other aspects or designs. Rather, use of the word exem-
plary is intended to present concepts in a concrete fashion.

While the exemplary embodiments have been described
with respect to processing blocks in a software program,
including possible implementation as a digital signal proces-
sor, micro-controller, or general-purpose computer,
described embodiments are not so limited. As would be
apparent to one skilled in the art, various functions of soft-
ware might also be implemented as processes of circuits.
Such circuits might be employed in, for example, a single
integrated circuit, a multi-chip module, a single card, or a
multi-card circuit pack.

Described embodiments might also be embodied in the
form of methods and apparatuses for practicing those meth-
ods. Described embodiments might also be embodied in the
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form of program code embodied in non-transitory tangible
media, such as magnetic recording media, optical recording
media, solid state memory, floppy diskettes, CD-ROMs, hard
drives, or any other non-transitory machine-readable storage
medium, wherein, when the program code is loaded into and
executed by a machine, such as a computer, the machine
becomes an apparatus for practicing described embodiments.
Described embodiments might can also be embodied in the
form of program code, for example, whether stored in a
non-transitory machine-readable storage medium, loaded
into and/or executed by a machine, or transmitted over some
transmission medium or carrier, such as over electrical wiring
or cabling, through fiber optics, or via electromagnetic radia-
tion, wherein, when the program code is loaded into and
executed by a machine, such as a computer, the machine
becomes an apparatus for practicing the described embodi-
ments. When implemented on a general-purpose processor,
the program code segments combine with the processor to
provide a unique device that operates analogously to specific
logic circuits. Described embodiments might also be embod-
ied in the form of a bitstream or other sequence of signal
values electrically or optically transmitted through a medium,
stored magnetic-field variations in a magnetic recording
medium, etc., generated using a method and/or an apparatus
of the described embodiments.

It should be understood that the steps of the exemplary
methods set forth herein are not necessarily required to be
performed in the order described, and the order of the steps of
such methods should be understood to be merely exemplary.
Likewise, additional steps might be included in such meth-
ods, and certain steps might be omitted or combined, in meth-
ods consistent with various described embodiments.

As used herein in reference to an element and a standard,
the term “compatible” means that the element communicates
with other elements in a manner wholly or partially specified
by the standard, and would be recognized by other elements
as sufficiently capable of communicating with the other ele-
ments in the manner specified by the standard. The compat-
ible element does not need to operate internally in a manner
specified by the standard. Unless explicitly stated otherwise,
each numerical value and range should be interpreted as being
approximate as if the word “about” or “approximately” pre-
ceded the value of the value or range.

Also for purposes of this description, the terms “couple,”
“coupling,” “coupled,” “connect,” “connecting,” or “con-
nected” refer to any manner known in the art or later devel-
oped in which energy is allowed to be transferred between
two or more elements, and the interposition of one or more
additional elements is contemplated, although not required.
Conversely, the terms “directly coupled,” “directly con-
nected,” etc., imply the absence of such additional elements.
Signals and corresponding nodes or ports might be referred to
by the same name and are interchangeable for purposes here.

It will be further understood that various changes in the
details, materials, and arrangements of the parts that have
been described and illustrated in order to explain the nature of
the described embodiments might be made by those skilled in
the art without departing from the scope expressed in the
following claims.

We claim:

1. A media controller for a solid-state media, the media
controller in communication with a host device, the media
controller comprising:

a control processor configured to, in response to receiving

a request from the host device, the request including at
least one logical address and address range:
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determine, by a map of the media controller coupled to
the control processor, one or more physical addresses
of the solid-state media associated with the at least
one logical address and address range, the map com-
prising a multi-level map having a plurality of leaf-
level map pages, the plurality of leaf-level map pages
stored in the solid-state media, and a subset of the
plurality of leaf-level map pages stored in a map cache
coupled to the control processor, each leaf-level map
page comprising a plurality of map entries, each entry
associated with one or more physical addresses of the
solid-state media;

determine a type of the received request;

determine, based on the at least one logical address and
address range, whether a corresponding leaf-level
map page is stored in the map cache;

if the corresponding leaf-level map page is stored in the
map cache, the map cache is configured to return a
cache index and one or more control indicators of the
map cache entry storing the corresponding leaf-level
map page; and

enforce a set of ordering rules that selectively enable
access to a corresponding leaf-level map page based
on the one or more control indicators and the deter-
mined request type.

2. The media controller of claim 1, wherein if the corre-
sponding leaf-level map page is not stored in the map cache,
the control processor is further configured to:

allocate, if available, an empty entry of the map cache;

retrieve the currently accessed leaf-level map page from

the solid-state media; and

store the retrieved leaf-level map page to the allocated

entry of the map cache.

3. The media controller of claim 1, wherein the one or more
control indicators comprise a leaf-level map page lock indi-
cator and a plurality of leaf-level map entry lock indicators.

4. The media controller of claim 3, wherein the control
processor is configured to set the leaf-level map page lock
indicator of a corresponding leaf-level map page when the
corresponding leat-level map page is being retrieved from the
solid-state media to the map cache.

5. The media controller of claim 4, wherein:

the type of the received request comprises a write request

and a read request;

if the determined type of the received request is a write

request, the control processor is further configured to:

set one or more of the plurality of leaf-level map entry
lock indicators corresponding to the at least one logi-
cal address and address range accessed by the write
request.

6. The media controller of claim 5, wherein:

independent of the type of the received request, if at least

one of the plurality of leaf-level map entry lock indica-
tors is set, the control processor is configured to queue
the received request on an associated queue.

7. The media controller of claim 6, wherein the assigned
queue is one of a plurality of queues assigned dynamically
according to detecting that the leaf-level map page lock indi-
cator or one of the plurality of leaf-level map entry lock
indicators is set.

8. The media controller of claim 5, wherein, upon comple-
tion of the write request, the control processor is configured to
clear the one or more of the plurality of leat-level map entry
lock indicators corresponding to the physical addresses
accessed by the write request.
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9. The media controller of claim 5, wherein each of the
leaf-level map entries are configured to have the lock indica-
tors set independently.

10. The media controller of claim 3, wherein the control
processor is configured to clear the leaf-level map page lock
indicator of a corresponding leaf-level map page when the
corresponding leaf-level map page is stored in the solid-state
media to the map cache.

11. The media controller of claim 1, wherein the control
processor is configured to, based on the control indicators of
the leaf-level map page, queue the received request.

12. The media controller of claim 1, wherein the map is a
multi-level map, the multi-level map comprising:

a second-level map having a plurality of second-level map
pages, each of the second-level map pages having a
plurality of entries, each entry configured to store a
physical address of the solid state media; and

a first-level map having a plurality of entries, each entry
associated with a second-level map page, the first-level
map configured to associate the at least one logical
address and address range to at least one of the second-
level map pages.

13. The media controller of claim 12, wherein the first-
level map is stored in a map memory of the media controller,
all of the second-level map pages are stored in the solid state
media, and at least a subset of the second-level map pages are
temporarily stored in a map cache coupled to the control
processor of the media controller.

14. The media controller of claim 1, wherein the control
processor is further configured to:

maintain a sequential access tracking structure for each of
the leaf-level map pages stored in the map cache, the
sequential access tracking structure maintaining a count
of accesses to each leaf-level map page;

update the sequential access tracking structure of a given
leaf-level map page stored in the map cache when the at
least one logical address and address range of the
received request correspond to the given leaf-level map
page;

wherein the control processor is configured to detect, based
on the sequential access tracking structure, one or more
interleaved streams of sequential accesses, each of the
interleaved streams corresponding to a given one of the
leaf-level map pages.

15. The media controller of claim 14, wherein the control
processor is configured to increment the count of accesses
associated with a given leaf-level map page stored in the map
cache when a subsequent request accesses a logical address
range contiguous with the logical address range of a previous
received request.

16. The media controller of claim 15, wherein the control
processor is further configured to:

if the count of accesses of the sequential access tracking
structure reaches a threshold:

prefetch leaf-level map pages corresponding to one or
more logical address ranges sequential to the logical
address range of the subsequent request.

17. A method of processing, by media controller for a
solid-state media, a request received from a host device, the
request including at least one logical address and address
range, the method comprising:

determining, by a map of the media controller coupled to a
control processor of the media controller, one or more
physical addresses of the solid-state media associated
with the at least one logical address and address range,
the map comprising a multi-level map having a plurality
of leaf-level map pages, the plurality of leaf-level map
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pages stored in the solid-state media, and a subset of the
plurality of leaf-level map pages stored in a map cache
coupled to the control processor, each leaf-level map
page comprising a plurality of map entries, each entry

associated with one or more physical addresses of the >

solid-state media;

determining a type of the received request;

determining, based on the at least one logical address and
address range, whether a corresponding leaf-level map
page is stored in the map cache;

if the corresponding leaf-level map page is stored in the

map cache, returning a cache index and one or more
control indicators of the map cache entry storing the
corresponding leaf-level map page; and

enforcing a set of ordering rules that selectively enable

access to a corresponding leaf-level map page based on
the one or more control indicators and the determined
request type.

18. The method of claim 17, wherein if the corresponding
leaf-level map page is not stored in the map cache, the method
further comprises:

allocating, if available, an empty entry of the map cache;

retrieving the currently accessed leaf-level map page from

the solid-state media; and

storing the retrieved leaf-level map page to the allocated

entry of the map cache.

19. The method of claim 17, wherein the one or more
control indicators comprise a leaf-level map page lock indi-
cator and a plurality of leaf-level map entry lock indicators,
the method further comprising:

setting, by the control processor, the leaf-level map page

lock indicator of a corresponding leaf-level map page
when the corresponding leaf-level map page is being
retrieved from the solid-state media to the map cache.

20. The method of claim 19, wherein the type of the
received request comprises a write request and a read request,
the method further comprising:

if the determined type of the received request is a write

request:

setting, by the control processor, one or more of the
plurality of leaf-level map entry lock indicators cor-
responding to the at least one logical address and
address range accessed by the write request.

21. The method of claim 20, wherein, if at least one of the
plurality of leaf-level map entry lock indicators is set, the
method further comprises:

queuing, by the control processor, independent of the type

of' the received request, the received request on an asso-
ciated queue.

22. The method of claim 20, further comprising:

dynamically assigning, by the control processor, one of a

plurality of queues based on whether the leaf-level map
page lock indicator or one of the plurality of leaf-level
map entry lock indicators is set.

23. The method of claim 20, wherein, upon completion of
the write request, the method further comprises:

clearing, by the control processor, the one or more of the

plurality of leaf-level map entry lock indicators corre-
sponding to the physical addresses accessed by the write
request.

10

15

20

25

35

40

45

50

55

24

24. The method of claim 20, comprising:

independently setting, by the control processor, the lock
indicators for each of the leaf-level map entries.

25. The method of claim 19, further comprising:

clearing, by the control processor, the leaf-level map page
lock indicator of a corresponding leaf-level map page
when the corresponding leaf-level map page is stored in
the solid-state media to the map cache.

26. The method of claim 17, wherein the map is a multi-

level map, the multi-level map comprising:

a second-level map having a plurality of second-level map
pages, each of the second-level map pages having a
plurality of entries, each entry configured to store a
physical address of the solid state media; and

a first-level map having a plurality of entries, each entry
associated with a second-level map page, the first-level
map configured to associate the at least one logical
address and address range to at least one of the second-
level map pages.

27. The method of claim 26, further comprising:

storing the first-level map in a map memory of the media
controller;

storing all of the second-level map pages in the solid state
media; and

temporarily storing at least a subset of the second-level
map pages in a map cache coupled to the control pro-
cessor of the media controller.

28. The method of claim 17, further comprising, by the

control processor:

maintaining a sequential access tracking structure for each
of the leaf-level map pages stored in the map cache, the
sequential access tracking structure maintaining a count
of accesses to each leaf-level map page;

updating the sequential access tracking structure of a given
leaf-level map page stored in the map cache when the at
least one logical address and address range of the
received request correspond to the given leaf-level map
page; and

detecting, based on the sequential access tracking struc-
ture, one or more interleaved streams of sequential
accesses, each of the interleaved streams corresponding
to a given one of the leaf-level map pages.

29. The method of claim 28, further comprising, by the

control processor:

incrementing the count of accesses associated with a given
leaf-level map page stored in the map cache when a
subsequent request accesses a logical address range con-
tiguous with the logical address range of a previous
received request.

30. The method of claim 29, further comprising, by the

control processor:

if the count of accesses of the sequential access tracking
structure reaches a threshold:

prefetching leaf-level map pages corresponding to one or
more logical address ranges sequential to the logical
address range of the subsequent request.

31. The method of claim 17, wherein the method is imple-

mented by a machine executing program code encoded on a
non-transitory machine-readable storage medium.

#* #* #* #* #*



